Archivo de la categoría: Best Students 2014

XploreBilbao: Desarrollo de un aplicativo HTML5 híbrido urbano y plataforma de soporte para la recomendación de rutas de ocio y turismo en Bilbao

Mejor Proyecto Fin de Grado en Ingeniería Informática

ARITZ BILBAO JAYO   @AritzBi      aritzbilbao@deusto.es
DIEGO LÓPEZ DE IPIÑA    Director

Figura 1: Una ruta visualiazada en un móvil
Figura 1: Una ruta visualiazada en un móvil

Cuando mi tutor Diego López de Ipiña, me ofreció desarrollar XploreBilbao, una aplicación web y móvil cuyo principal objetivo era diseñar e implementar un asistente capaz de recomendar rutas personalizadas por Bilbao, me pareció algo imposible de hacer en el
poco tiempo del que disponía, 5 meses. Tenía que crear desde la nada una aplicación que necesitaba obtener datos turísticos de Bilbao (restaurantes, bares, eventos, monumentos, etc.), para así, una vez recolectados, ser capaz de crear rutas personalizadas
teniendo en cuenta tanto las preferencias del usuario, como otros factores externos, tales como el clima. Por tanto, lo primero que hice fue empezar a buscar formas de poder recopilar información turística sobre Bilbao para así poder tratarla, almacenarla, utilizarla
para la creación de rutas personalizadas y por último, publicarla para que pudiera ser utilizada por aplicaciones de terceros.
Tras ver que no existían fuentes de datos públicas y fácilmente accesibles sobre los datos turísticos de Bilbao, opté por una técnica llamada «web scraping» que se basa básicamente en analizar el
código fuente (HTML) de las páginas web e ir obteniendo los datos que te interesan de unas páginas webs previamente seleccionadas. Para ello, se usan técnicas como las expresiones «XPath» que permiten especificar en qué zona del código está el dato a recuperar o expresiones regulares para especificar de una forma más precisa el formato del dato que se quiere obtener.
Una vez tenía encaminada la obtención de datos, inicié el desarrollo de la aplicación web, algo en lo que tenía muy poca experiencia previa y no me sentía con los conocimientos suficientes para llevarlo a cabo. Como impedimento, debía tener en cuenta una restricción, y era que debía usar una plataforma
totalmente desconocida para mí llamada NodeJS, con el fin de poder emplearla en futuros proyectos, al tratarse de una plataforma que está en auge y cada día se utiliza más.

Entre algunas de las características de NodeJS se encuentra
la de poder ejercer de servidor. Por tanto, lo primero que hice fue dedicar un par de semanas exclusivamente a aprender cómo funcionaba NodeJS mediante tutoriales para, finalmente, terminar haciendo la estructura básica del servidor.
Tras dejar encaminado el servidor, comencé con la parte web. Elegí una librería llamada AngularJS para creación de páginas webs. Se trata de una herramienta relativamente nueva y que cada vez se emplea más en la creación de páginas webs. Afortunadamente, muchos de los conceptos de AngularJS se basan en herramientas dadas durante la carrera, lo que facilitó el aprendizaje del mismo.
Por tanto, tenía las 3 columnas básicas del proyecto relativamente controladas, pero faltaban 2 elementos más: el sistema de recomendaciones personalizado y el cálculo de rutas óptimas desde un punto a otro.

Figura 2: Lista de eventos en la página web
Figura 2: Lista de eventos en la página web

Por un lado, para el sistema de recomendaciones personalizado, decidí usar uno de los conocimientos adquiridos durante la carrera, impartido en la asignatura de inteligencia artificial: un sistema basado en reglas el cual, a pesar de que en sus primeras versiones es algo simple, es fácilmente extensible. Algunas de las reglas que están actualmente implementadas son: si el usuario va solo o acompañado, se tiene en cuenta el clima que hace y si el usuario está interesado en una ruta turística o de ocio.
Por otro lado, para el cálculo de rutas óptimas, tuve la suerte de que uno de los diversos cursos que imparten los investigadores de DeustoTech fuese sobre eso y me pude basar en él para el desarrollo de mi sistema.
En conclusión, un proyecto que en un principio veía que iba a ser incapaz de realizar en tan poco tiempo se convirtió en una excelente manera de adentrarme en el mundo del desarrollo web con algunas de las herramientas más innovadoras del mercado. Actualmente,
XploreBilbao está en proceso de despliegue y se puede visitar en la siguiente dirección:
http://apps.morelab.deusto.es/xplorebilbao/.

Seguir leyendo XploreBilbao: Desarrollo de un aplicativo HTML5 híbrido urbano y plataforma de soporte para la recomendación de rutas de ocio y turismo en Bilbao

Análisis energético del frenado regenerativo en vehículos híbridos y eléctricos operados en velocidad de crucero

Mejor Proyecto en Doble grado en ADE + Ingeniería en Tecnologías Industriales

GUILLERMO JÖNAS RUBÍ       wim.jonas@gmail.com

JOSÉ IGNACIO GARCÍA QUINTANILLA     Director del proyecto

Figura 1. Modelo completo del accionamiento del vehículo eléctrico

 

La industria del automóvil avanza a pasos agigantados en el desarrollo de nuevos sistemas que faciliten la conducción y que hagan del vehículo un sistema más eficiente y cómodo. En este  sentido, se han desarrollado diversas funcionalidades que se van introduciendo en los vehículos comerciales, como la velocidad de crucero y los sistemas de recuperación energética, entre otros.
En línea con estos desarrollos, el proyecto se enmarca en un vehículo eléctrico que incorpora un sistema de velocidad de crucero, encargado de regular la velocidad del vehículo «hacia arriba», lo que quiere decir que acelera el vehículo cuando éste viaja a una
velocidad por debajo de la velocidad de consigna establecida por el conductor. Se propone integrarlo con un sistema de frenado regenerativo, que actúe sobre el vehículo cuando la velocidad del mismo alcance un valor superior al de consigna, permitiendo
así una regulación de la velocidad «hacia abajo».
Se ha realizado un análisis energético del sistema propuesto.
Para un vehículo eléctrico operado en velocidad de crucero, con el objetivo de analizar la energía liberada en un salto de velocidad descendente, se ha realizado una simulación del accionamiento eléctrico integrando la herramienta Simulink y SimDriveline del
paquete Matlab. En la figura 1 se muestra el modelo completo de ese accionamiento.

Figura 2. Banco de pruebas en laboratorio

 

Dicha simulación es configurable a través de una interfaz GUIDE desarrollada para tal efecto, que permite parametrizar las  principales variables del entorno y del vehículo. La interfaz facilita también el análisis de resultados, mostrando así la velocidad del vehículo, el comportamiento del motor y una estimación de la energía disponible para el salto de velocidades deseado.
Por último, cabe destacar la posibilidad de comunicar los resultados de la simulación con el equipamiento del laboratorio de Electrónica de Potencia y Máquinas Eléctricas de la Facultad de Ingeniería,
comandando así un motor asíncrono accionado por variador de velocidad (figura 2).
De esta forma, se ha realizado una experimentación con equipos reales para demostrar la existencia de una energía recuperable con un salto de velocidades establecido por el usuario. Además de un motor asíncrono y su variador de velocidad, se ha empleado un generador, un volante de inercia y un vatímetro digital como elementos principales.
Demostrada la existencia de esa energía, que aumenta la eficiencia del vehículo, se propone mejorar el desarrollo de la simulación, haciéndola más realista, introduciendo un elemento de frenado activo en el modelo, regulando el motor para eliminar oscilaciones
que se producen en simulación y avanzando hacia un modelo más ágil que reduzca el tiempo de simulación considerablemente. Además, se plantea analizar el comportamiento que tienen las  variables externas del vehículo sobre la recuperación energética,
que aunque están ya introducidas en el modelo, su influencia no ha sido estudiada.

Con estos avances, se propone realizar un análisis económico-ambiental del sistema, permitiendo así a la industria entender, además del beneficio ambiental, qué impacto económico tendría su desarrollo para introducirlo en los vehículos. Si dicho estudio resultara favorable, se pasaría a continuación a realizar el diseño mecánico y electrónico del sistema, a diseñar la lógica de funcionamiento y estudiar la integración e interactuación del sistema con los sistemas electrónicos ya existentes.
Por tanto, demostrada la existencia de una energía recuperable, tanto experimentalmente como en la simulación, el proyecto representa un primer paso en el desarrollo de un sistema de frenado activo que permita la recuperación de energía liberada en el frenado,
mejorando así la eficiencia energética del vehículo y aportando mayor comodidad al conductor.

Diseño de los apéndices aerodinámicos y optimización de la respuesta dinámica de un vehículo Formula Student

Mejor Proyecto Fin de Grado en Ingeniería en Tecnologías Industriales

OIER FRANCO DOBARAN    oier.franco@gmail.com
IconoLinkedin http://lnkd.in/dw73sZh

JON GARCÍA BARRUETABEÑA
Director

Figura 1. Comparativa de la evolución del coeficiente de sustentación en función del ángulo de ataque para una velocidad de 60 km/h

Figura 1. Comparativa de la evolución del coeficiente de sustentación en función del ángulo de ataque para una velocidad de 60 km/h

El proyecto fin de grado tiene como objetivo principal el diseño y  optimización de los elementos aerodinámicos así como la respuesta dinámica de un vehículo Formula Student.
La Formula Student es una competición internacional entre universidades de todo el mundo que se celebra anualmente en distintos circuitos de carreras, a destacar, Silverstone (Inglaterra), Hockenheim (Alemania) o Montmelo (España).
El evento está organizado por la Institution of Mechanical Engineers (IMechE) con el objetivo de promover la formación de los estudiantes a través de un proyecto práctico que engloba la mayoría de los ámbitos de la ingeniería. A través de un ejercicio real consistente en diseñar y fabricar un monoplaza, unido al trabajo de marketing, logística y gestión de costes, se pretende que los estudiantes desarrollen el trabajo en equipo con una limitación temporal y formarlos así de manera cualificada. Durante el evento, los equipos son juzgados por especialistas del sector, debiendo superar diversas pruebas (estáticas y dinámicas) que demuestren el correcto funcionamiento del vehículo diseñado.
La carga aerodinámica en automovilismo ha sido uno de los parámetros clave para determinar el rendimiento óptimo del vehículo desde hace más de cuatro décadas. Junto con la potencia de los motores, el peso y los neumáticos es uno de los cuatro parámetros más importantes a optimizar para automóviles de competición.
Los paquetes aerodinámicos se dividen en dos grupos. El primer grupo se caracteriza por la función de distribuir los flujos de aire como por ejemplo el carenado de los brazos de suspensión de un Formula 1… El segundo grupo se define por el simple objetivo de generar carga aerodinámica, que variará en función de los criterios del equipo, diseñador… Dentro de este segundo grupo se incluyen los elementos a diseñar y optimizar en el presente proyecto.
El diseño del paquete aerodinámico comienza realizando un estudio de los diferentes perfiles alares existentes con el fin de seleccionar el perfil a emplear y conocer su comportamiento, dado que los requisitos y condiciones de trabajo que demanda el sector automovilístico son muy diversos. Tras realizar una comparación a los perfiles seleccionados, se llega a la conclusión de que el perfil a emplear es el mismo que la temporada anterior.
Una vez seleccionado el perfil, se optimiza la geometría del alerón trasero bajo el criterio de obtener la máxima eficiencia aerodinámica, es decir, generar la mayor carga aerodinámica con la mínima resistencia al avance. Para ello, se realizan diferentes análisis variando el valor del Slot Gap, la posición relativa entre
perfiles, llegando a la conclusión de que el valor óptimo es de 4cm.

Figura 2. Líneas de trayectoria del aire a través de la geometría diseñada
Figura 2. Líneas de trayectoria del aire a través de la geometría diseñada

A continuación, se diseña el fondo plano y difusor con el fin de  obtener la máxima carga posible. Se realizan diferentes análisis para obtener la geometría y pendientes idóneos.
Una vez analizados y seleccionados los elementos del paquete aerodinámico se prosigue a diseñar el alerón delantero en función de los perfiles de fuerza de los restantes elementos y la posición del centro del presiones del vehículo, dado que, una de las principales funciones del alerón delantero es equilibrar el vehículo garantizando una mayor maniobrabilidad. Siguiendo una metodología de diseño inversa, se genera la geometría que equilibra los momentos generados por el alerón trasero y fondo plano.

Para poder obtener la mejor configuración de la suspensión posible y así optimizar la respuesta dinámica del vehículo, se realiza un modelo dinámico del monoplaza Formula Student. Con dicho modelo, introduciendo las fuerzas  erodinámicas y la rugosidad del asfalto se obtienen valores y velocidades de desplazamiento de cualquier punto del vehículo. Con el objetivo de minimizar dichos desplazamientos, se llega a la configuración de suspensión apropiada entre las disponibles.

Use of Collaborative Practices to improve the Efficiency in the Supply Chain Management: a Simulation Study

Mejor proyecto Fin de Grado en Ingeniería en Organización Industrial

JUAN CARLOS GIETZ

ALBERTO DE LA CALLE
Director del proyecto

Fig 1: Supplier´s, Manufacturer´s, and Retailer´s Joint Areas of Interest
Fig 1: Supplier´s, Manufacturer´s, and Retailer´s Joint Areas
of Interest

Motivation

The new and changing requirements of demand consolidate the  supply chain management study as an area of growing interest.  Indeed, it has turned out that the Supply Chain (hereafter SC) can  become an exceedingly powerful competitive advantage for any industrial organization. As stated by many authors, current competition does not take place between mere enterprises any longer but rather between whole supply chains, from its first supplier to the end consumer.

Problem

However, in all existing Supply Chain networks, the flow of information both upstream and downstream deteriorates the further it gets transmitted from one echelon to the next one in the chain due to demand forecasting errors, poor communication, mistrust among the members of the chain, etc. Consequently,
the Bullwhip Effect appears. The fluctuations in clients demand may usually have a harmful effect on the whole system because of the high level of existing interdependence among the echelons. Hence,
high variable replenishment orders will certainly flawed forecasts while simultaneously the inventories at each level of the SC will be insufficient provided, precluding them to afford possible demand peaks.
The consequences can be defined on the one hand as an unlimited growth of the warehouse´s inventory resulting in increasing inventory costs, and on the other, increased backlogged orders due to stock shortages.

Fig 2: Comparison Inventories of the Three Models
Fig 2: Comparison Inventories of the Three Models

Objective

The project is based upon the revision of previous experiences in order to implement a model which allows the analysis of the improvement opportunities as a result of collaborative practices between the different echelons in the supply chain. SCs have joint
areas of interests, where collaboration agreements foster a win-win relationship between all the involved parties. Thus, the final aim of this paper is to simulate the behavior of supply chains using collaborative practices and support the assertion that the usage of these practices helps to improve the efficiency in the supply chain management.

Methodology

One of the most common ways to deal with simulation models is system dynamics which is not intended to be employed as a forecasting tool, but rather a learning means through which analysis of policy decision making can be reviewed.
In this regard, the chosen collaborative alternatives are the Vendor Management Inventory (VMI) and Electronic Point of Sales (EPOS). The brief idea behind VMI is that the upstream partner takes over all replenishment decisions of the downstream partner, while the main property of EPOS systems is that the whole SC has access to data about current sales to the end consumer The software tool  employed for this project is Vensim ® due to its appropriate combination of system dynamics concepts and the simulation of discrete events to represent the supply chain´s events and uncertainties in detail.

Live.Best.JuanCarlos.Imagen3

Results and Conclusions

Three different scenarios were performed according to three different possibilities (traditional, VMI, and EPOS), proving all of them satisfactory responses to the purpose for which they were created. Indeed, it could be established that the usage of collaborative practices betters supply chain management.
As observed, the benefits do not only include a reduction in the supply chain inventories but also an increased service level, reducing the total amount of backlogged orders while boosting customer satisfaction.
Consequently, SC collaboration has been proven to be a reliable and helpful strategy which allows an improvement in the company operation´s deployment both at strategic and tactical level in order
to overcome the new and ever-more-changing requirements of demand.

Design and Implementation of a Digital Signal Processing Algorithm to Improve Esophageal Speech Excitation Signal

Mejor Proyecto Fin de Grado en Ingeniería de Telecomunicación

JON ZARRAJERIA GONZÁLEZ DE ASPURU

BEGOÑA GARCÍA ZAPIRAIN. Directora del proyecto

Figura 1. Linear Source Filter Model
Figura 1. Linear Source Filter Model

El origen del proyecto, según su autor

Durante mis estudios de grado he ido obteniendo conocimientos en diferentes áreas de la ingeniería de telecomunicación. Aún así, esta carrera tiene una estrecha relación con el sonido ya que éste no deja de ser una onda más a estudiar. Cuando empecé a trabajar en uno de los departamentos de investigación de la universidad  (DeustoTech-Life). A finales de mi segundo curso de carrera, me di cuenta de que quería aprender más sobre cómo se procesa la voz humana y por eso no dejé escapar esta oportunidad.
El proyecto presentado se enmarca en el contexto de la mejora de la voz esofágica. Los laringectomizados son personas que por diversos problemas médicos se han visto obligadas a someterse a una cirugía para extirpar la laringe, cuerdas vocales, epiglotis y cartílagos que rodean la laringe. Debido a que estos elementos son una parte vital del aparato fonador, la eliminación de estas partes afecta en gran medida la calidad de la voz, y consecuentemente puede llegar a acarrear problemas psicológicos ya que hay personas que prefieren dejar de hablar antes de hacerlo con su nueva voz.

Figura 2. Esquema general del algoritmo
Figura 2. Esquema general del algoritmo

Un verdadero proyecto científico

El algoritmo propuesto trata de descomponer la voz de los pacientes siguiendo el modelo «Linear Source Model» presentado en la Figura 1 y a posteriori modificar la señal excitación para así poder reconstruir una nueva señal con mayor calidad. A continuación se referirá cada punto del esquema general del algoritmo representado en la Figura 2.

  1. Para la adquisición de la señal excitación primero hay que obtener los coeficientes (polos) del tracto vocal que actúan como un filtro. Además, dichos coeficientes son modificados eliminado los situados en las frecuencias más bajas y consiguiendo así una mejor base  donde trabajar en el punto 2.
  2. Para la modificación de la señal fuente se ha generado un pulso de señal excitación de forma artificial y se ha combinado con el original para crear uno con mejores características. Una de las razones por las que se han combinado ambas señales (pulso original y pulso modificado) es que se quiere mantener la «personalidad» de cada persona, es decir, si sólo se usara la señal excitación generada de forma artificial el sonido resultante sería muy robótico y sería complicado saber distinguir entre dos personas que estén usando este algoritmo.
  3. Finalmente, se ha reconstruido una nueva señalde voz a partir de las modificaciones hechas anteriormenteconsiguiendo un habla de mayor calidad.
Figura 3. Herramienta para el procesado de voces esofágicas
Figura 3. Herramienta para el procesado de voces esofágicas

¿Un producto comercializable?

Además de diseñar el algoritmo, también se ha implementado en una herramienta para procesar este tipo de señales (Figura 3). En ella es posible cargar bases de datos con diferentes sonidos y poder
ajustar los parámetros deseados para un correcto funcionamiento del algoritmo, además de añadir un bloque de post-procesado para aplicar filtros a la nueva señal de voz. Este software podría ser preparado para ser comercializado en base a licencias.

Mejorando la calidad de vida de las personas

Jon y Begoña comparten satisfacción por el logro alzanzado. «Con la realización de este proyecto ha sido posible mejorar significativamente el «NHR» (Noise to Harmonic Ratio) y «jitter» en la voz de estas personas. Además, también se realizó una prueba más subjetiva (Mean Opinion Score) en la que diferentes personas tenían que escuchar sonidos, tanto procesados como no procesados por el algoritmo, para ver si resultaba mejor el modificado por la herramienta. Para este caso, también se demostró ser mejor la nueva voz propuesta por este proyecto».
«Finalmente, nos gustaría destacar que aunque hay muchos centros de investigación trabajando en temas de sonido y voz, son pocos aquellos que se centran en ayudar a personas con esta patología,
y por lo que a nosotros respecta, es de gran importancia poder aplicar nuestros conocimientos en un área en la que estemos ayudando en mejorar la calidad de vida de otras personas».

Diseño e implementación de un sistema de tracción eléctrico para una motocicleta convencional

Mejor Proyecto Fin de Grado en Ingeniería en Ingeniería Electrónica Industrial y Automática

Cristian Alonso Vallejo
cr.alonsov@gmail.com
IconoLinkedin https://linkedin.com/in/cristianalonso

JOSÉ IGNACIO GARCÍA QUINTANILLA
Director del proyecto

Figura 1. Equipo montado en mesa de pruebas
Figura 1. Equipo montado en mesa de pruebas

 

Tras estos últimos cuatro años de etapa universitaria, siempre había leído con un cierto recelo las páginas de esta revista. Me preguntaba qué es lo que debería hacer para poder leer algún día mi propio artículo, aunque fuera una receta de cocina como suele aparecer
en las últimas páginas. De lo que no me daba cuenta es que mientras pensaba esto, usando el esfuerzo como ingrediente, estaba cocinando lo que sería ésta magnífica invitación. Ahora, a seiscientos
kilómetros de casa, me toca comentar un proyecto que nunca pensé que se convertiría en realidad.
Creo que al menos una vez en la vida, todo aficionado a la automoción ha soñado con poder crear y conducir su propio vehículo, sentir lo que sintió Ferdinand Porsche cuando creó su primer automóvil.
No he elegido el nombre de este prestigioso ingeniero por casualidad, ya que con tan solo 25 años y con la colaboración de Jacob Lohner, presentó en el salón de París de 1900 un vehículo que incorporaba un motor eléctrico en cada una de las ruedas delanteras.
A falta de menos de un año para llegar al cuarto de siglo, todavía podría adelantarle al construir mi primer vehículo a una edad más temprana. Obviamente la innovación en el proyecto no será la misma, ya que ha pasado más de un siglo, ni tampoco se presentará
en ningún salón de París, pero no será por falta de ilusión.
El Proyecto Fin de Grado consistió en el diseño de un sistema de tracción eléctrico, con motor síncrono de imanes permanentes de 4kW, para una motocicleta. El objetivo del proyecto era sustituir el motor de gasolina convencional de un ciclomotor existente, por un método de transporte más eficiente y que ofreciera al menos las mismas, o similares, relaciones «potencia/peso» y «potencia/dimensiones» sin dejar de lado el problema de la
autonomía.

Figura 2. Aprilia RS 50. Motocicleta donde irá montado el sistema
Figura 2. Aprilia RS 50. Motocicleta donde irá montado el sistema

 

Siempre se ha considerado al motor de combustión como una máquina imperfecta debido a su bajo rendimiento térmico, sin embargo, pese a que en sus comienzos el vehículo usaba motores eléctricos, éstos no terminaron de imponerse. Ahora parece que
las cosas están cambiando y los vehículos eléctricos están empezando a conseguir más popularidad, aunque todavía están muy lejos de alcanzar las prestaciones que se les exige.
Por ello, y porque haber construido un coche hubiera supuesto un coste mucho más elevado, me decanté por un ciclomotor, ya que al realizar trayectos muy cortos y con unos niveles de potencia relativamente bajos, la distancia máxima a recorrer podría ser abordable.

Durante el desarrollo de mi proyecto encontré tres grandes dificultades. Una de ellas fue por desconocimiento de la técnica de sintonización del controlador, ya que al adquirir un modelo comercial había muchos conceptos nuevos. Las otras dos, fueron causadas por el mismo motivo, las baterías.

Supusieron la mitad del coste de todo el proyecto, supondrán más de la mitad de la masa total de la motocicleta una vez terminada y, debido a su tamaño, condicionarán el emplazamiento de todos los demás componentes. Todo ello, pese a ser una de las tecnologías más eficientes actualmente en el mercado (LiFePo4).
Pese a todas esas dificultades, gracias a la paciencia de mi tutor de proyecto, la ayuda técnica por parte de los suministradores del controlador en España, el apoyo económico de mis padres y muchas
tardes de trabajo duro, el proyecto terminó funcionando.
El camino ahora es aprovechar este proyecto y que los equipos de la mesa de pruebas pasen a estar finalmente montados sobre la  motocicleta de la imagen y, algún día, también circulando por las carreteras de forma legal.